top of page

Comprehensive list of Machine Learning Algorithms

  • Writer: Soham Chausalkar
    Soham Chausalkar
  • Aug 7, 2023
  • 5 min read


Table of Content


Supervised Learning:

Linear Models:

  1. Linear Regression

  2. Ridge Regression

  3. Lasso Regression

  4. Elastic Net

  5. Polynomial Regression

  6. Bayesian Linear Regression

  7. Locally Weighted Linear Regression

  8. Logistic Regression

  9. Multinomial Logistic Regression

  10. Support Vector Machines (SVM) - Linear Kernel

Nearest Neighbor Methods:

  1. k-Nearest Neighbors (k-NN)

  2. Radius Neighbors

  3. Nearest Centroid Classifier

Decision Trees and Ensembles:

  1. Decision Trees

  2. Random Forest

  3. Extra Trees Classifier/Regressor

  4. AdaBoost (Adaptive Boosting)

  5. Gradient Boosting (e.g., XGBoost, LightGBM, CatBoost)

  6. Histogram-Based Gradient Boosting

  7. LogitBoost

  8. BrownBoost

  9. TotalBoost

  10. Extreme Gradient Boosting (XGBoost)

  11. LightGBM (Light Gradient Boosting Machine)

  12. CatBoost

  13. Gradient Boosting Regression for Survival Data (GBRS)

  14. MART (Multiple Additive Regression Trees)

  15. RankBoost

  16. Stochastic Gradient Boosting (SGD)

Linear Classifiers:

  1. Perceptron

  2. Support Vector Machines (SVM) - Non-linear Kernels (e.g., Polynomial, RBF)

  3. Linear Discriminant Analysis (LDA)

  4. Quadratic Discriminant Analysis (QDA)

  5. Naive Bayes Classifier

Neural Networks:

  1. Feedforward Neural Networks (FNN)

  2. Convolutional Neural Networks (CNNs)

  3. Recurrent Neural Networks (RNNs)

  4. Long Short-Term Memory (LSTM)

  5. Gated Recurrent Unit (GRU)

  6. Bidirectional RNNs

  7. Attention Mechanisms (e.g., Transformer)

  8. Sequence-to-Sequence Models

  9. Capsule Networks (CapsNets)

  10. Generative Adversarial Networks (GANs) for Classification

  11. Transfer Learning with Pre-trained Neural Networks

Probabilistic Models:

  1. Gaussian Naive Bayes

  2. Multinomial Naive Bayes

  3. Bernoulli Naive Bayes

  4. Gaussian Process Classification

  5. Conditional Random Fields (CRF)

Tree-Based Methods:

  1. Decision Trees

  2. Random Forest

  3. Extra Trees Classifier/Regressor

  4. Isolation Forest

  5. Tree Augmented Naive Bayes (TAN)

  6. Bayesian Networks (with Decision Trees)

  7. Chi-Squared Automatic Interaction Detection (CHAID)

  8. Conditional Decision Trees

Rule-Based Classifiers:

  1. RIPPER (Repeated Incremental Pruning to Produce Error Reduction)

  2. PART (Partial Decision Trees)

  3. OneR (One Rule)

Kernel Methods:

  1. Support Vector Machines (SVM) - Non-linear Kernels (e.g., Polynomial, RBF)

  2. Kernel Ridge Regression

Instance-Based Learning:

  1. k-Nearest Neighbors (k-NN)

  2. Learning Vector Quantization (LVQ)

Bayesian Methods:

  1. Naive Bayes Classifier

  2. Gaussian Naive Bayes

  3. Multinomial Naive Bayes

  4. Bernoulli Naive Bayes

  5. Bayesian Linear Regression

  6. Bayesian Network Classifiers

Regularization Methods:

  1. L1 Regularization (Lasso)

  2. L2 Regularization (Ridge)

  3. Elastic Net

Ordinal Regression:

  1. Proportional Odds Model

  2. Continuation Ratio Model

  3. Ordinal Ridge Regression

Multi-Label Classification:

  1. Binary Relevance

  2. Label Powerset

  3. Classifier Chains

  4. Random k-Labelsets

Deep Learning for Classification:

  1. Wide & Deep Learning

  2. Deep Convolutional Neural Networks (CNNs)

  3. Recurrent Neural Networks (RNNs)

  4. Transformer-based Models (e.g., BERT, GPT)


Unsupervised Learning:

Clustering:

  1. k-Means Clustering

  2. k-Medians Clustering

  3. k-Medoids Clustering

  4. k-Prototypes Clustering

  5. Hierarchical Clustering

  6. Agglomerative Clustering

  7. Divisive Clustering

  8. ROCK (Robust Clustering Algorithm)

  9. CLARA (Clustering Large Applications)

  10. CLARANS (Clustering Large Applications based on RANdomized Search)

  11. Chameleon Clustering

  12. Self-Organizing Maps (SOM)

  13. Neural Gas Clustering

  14. BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

  15. CURE (Clustering Using Representatives)

  16. CHAMELEON (CHAracterizing MEtrics for LOcalizatioN)

  17. DENCLUE (DENsity CLUstEring)

  18. SNN (Shared Nearest Neighbor)

  19. COBWEB (COntinuous Belief WEb)

Dimensionality Reduction:

  1. Principal Component Analysis (PCA)

  2. Independent Component Analysis (ICA)

  3. Non-Negative Matrix Factorization (NMF)

  4. Laplacian Eigenmaps

  5. Multi-Dimensional Scaling (MDS)

  6. Local Linear Embedding (LLE)

  7. Hessian LLE

  8. Isomap (Isometric Mapping)

  9. t-Distributed Stochastic Neighbor Embedding (t-SNE)

  10. Curvilinear Component Analysis (CCA)

  11. Elastic Embedding

  12. Maximum Variance Unfolding (MVU)

  13. Diffusion Maps

  14. Laplacian Eigenmaps

  15. Sammon Mapping

  16. Local Outlier Factor (LOF)

  17. Autoencoders

  18. Robust Principal Component Analysis (RPCA)

  19. Canonical Correlation Analysis (CCA)

  20. Generalized Low Rank Approximations of Matrices (GLRAM)

  21. Probabilistic PCA (PPCA)

Association Rule Learning:

  1. Apriori Algorithm

  2. Eclat Algorithm

  3. FP-Growth Algorithm

Anomaly Detection:

  1. Isolation Forest

  2. Local Outlier Factor (LOF)

  3. One-Class SVM (Support Vector Machine)

  4. Autoencoders for Anomaly Detection

  5. Cluster-Based Outlier Detection

Generative Models:

  1. Gaussian Mixture Models (GMM)

  2. Hidden Markov Models (HMM)

  3. Latent Dirichlet Allocation (LDA)

  4. Variational Autoencoders (VAEs)

  5. Restricted Boltzmann Machines (RBMs)

  6. Generative Adversarial Networks (GANs)

  7. Autoencoders for Data Generation

Matrix Factorization:

  1. Singular Value Decomposition (SVD)

  2. Non-Negative Matrix Factorization (NMF)

  3. Probabilistic Matrix Factorization

Feature Learning:

  1. Autoencoders

  2. Self-Taught Learning

  3. Sparse Coding

Graph-Based Methods:

  1. Graph Clustering

  2. Community Detection

  3. Graph Embedding

Non-parametric Density Estimation:

  1. Kernel Density Estimation (KDE)

  2. Parzen Windows

Expectation-Maximization (EM):

  1. Gaussian Mixture Models (GMM)

  2. Hidden Markov Models (HMM)

Self-Organizing Maps (SOM):

  1. Kohonen Maps

  2. Growing Neural Gas (GNG)

Independent Component Analysis (ICA):

  1. FastICA

  2. JADE (Joint Approximate Diagonalization of Eigenmatrices)

Principal Component Analysis (PCA):

  1. Kernel PCA

  2. Incremental PCA

  3. Sparse PCA

Hierarchical Temporal Memory (HTM):

  1. Neural Network Model for Learning Sequences and Patterns

Word Embeddings:

  1. Word2Vec

  2. FastText

  3. GloVe

Transfer Learning and Domain Adaptation:

  1. Pre-trained Models (e.g., Word2Vec, GPT, BERT)

  2. Domain Adaptation Algorithms


Semi-Supervised Learning:

  1. Self-Training

  2. Co-Training

  3. Multi-View Learning

  4. Multi-Instance Learning

  5. Semi-Supervised Support Vector Machines (S3VM)

  6. Transductive Support Vector Machines (TSVM)

  7. Temporal Ensembling

  8. Mean Teacher (Temporal Ensembling with Exponential Moving Average)

  9. Virtual Adversarial Training (VAT)

  10. Consistency Regularization

  11. MixMatch

  12. VAT + Entropy Minimization

  13. Noisy Student Training

  14. Pseudo-Labeling

  15. Tri-Training

  16. Self-Ensemble

  17. MentorNet

  18. Combination of Labeled and Unlabeled Data (CLUD)

  19. Entropy-Regularized Self-Training

  20. Self-Paced Learning

  21. Label Propagation

  22. Label Spreading

  23. Manifold Regularization

  24. Self-Taught Learning

  25. Data Programming

  26. Unsupervised Data Augmentation (UDA)

  27. Self-Labeling

  28. Joint Unsupervised Learning (JULE)

  29. Ladder Networks

  30. Deep Generative Models with Semi-Supervised Learning

  31. Semi-Supervised Clustering Algorithms

  32. Semi-Supervised Anomaly Detection Techniques

  33. Semi-Supervised Reinforcement Learning (e.g., S3RL)

  34. Semi-Supervised Sequence Learning

  35. Few-Shot Learning with Semi-Supervised Techniques


Reinforcement Learning:


Model-Free Algorithms:

  1. Q-Learning

  2. SARSA (State-Action-Reward-State-Action)

  3. DDPG (Deep Deterministic Policy Gradient)

  4. TRPO (Trust Region Policy Optimization)

  5. PPO (Proximal Policy Optimization)

  6. A3C (Asynchronous Advantage Actor-Critic)

  7. ACKTR (Actor-Critic using Kronecker-Factored Trust Region)

  8. D4PG (Distributed Distributional Deterministic Policy Gradients)

  9. TD3 (Twin Delayed Deep Deterministic Policy Gradient)

  10. SAC (Soft Actor-Critic)

  11. Hindsight Experience Replay

  12. Rainbow DQN (Combining DQN Improvements)

  13. C51 (Categorical DQN)

  14. IQN (Implicit Quantile Network)

  15. QR-DQN (Quantile Regression DQN)

  16. R2D2 (Recurrent Experience Replay in DQN)

  17. HER (Hindsight Experience Replay)

  18. CACLA (Continuous Actor-Critic Learning Automaton)

  19. FQF (Fully Parameterized Quantile Function)

Model-Based Algorithms:

  1. Monte Carlo Methods

  2. Value Iteration

  3. Policy Iteration

  4. DDP (Differential Dynamic Programming)

  5. MPC (Model Predictive Control)

  6. MBMF (Model-Based Meta-RL)

  7. Dreamer (Deep Reinforcement Learning from Off-Policy Data with Effective Model Planning)

  8. PlaNet (Planning Network)

  9. MBPO (Model-Based Policy Optimization)

  10. SLAC (Unsupervised Discovery of Object Landmarks as Structural Representation in Reinforcement Learning)

Exploration Strategies:

  1. Epsilon-Greedy Exploration

  2. Boltzmann Exploration

  3. Upper Confidence Bound (UCB) Exploration

  4. Thompson Sampling

  5. Noisy Networks for Exploration

  6. Count-Based Exploration

  7. Bootstrapped DQN (Exploration through Disagreement)

  8. Bayesian Exploration

  9. Random Network Distillation

Imitation Learning:

  1. Behavioral Cloning

  2. DAgger (Dataset Aggregation)

  3. GAIL (Generative Adversarial Imitation Learning)

  4. BCQ (Batch-Constrained Q-Learning)

  5. ILQR (Iterative Linear Quadratic Regulator)

  6. IRL (Inverse Reinforcement Learning)

Multi-Agent Reinforcement Learning:

  1. MARL (Multi-Agent Reinforcement Learning)

  2. MADDPG (Multi-Agent Deep Deterministic Policy Gradient)

  3. COMA (Counterfactual Multi-Agent Policy Gradients)

  4. QMIX (Q-value Mixing Network)

  5. IQL (Independent Q-Learning)

  6. ATOC (Actor-Attention-Critic)

  7. MASAC (Multi-Agent Soft Actor-Critic)

  8. SMAC (Sparse Multi-Agent Collaboration)


Generative Models:


Variational Autoencoders (VAEs):

  1. Vanilla VAE

  2. Conditional VAE

  3. Adversarial Autoencoder (AAE)

  4. Beta-VAE

  5. InfoVAE

  6. VQ-VAE (Vector Quantized VAE)

  7. CVAE-GAN (Conditional VAE-GAN)

  8. Ladder VAE

Generative Adversarial Networks (GANs):

  1. Vanilla GAN

  2. DCGAN (Deep Convolutional GAN)

  3. CGAN (Conditional GAN)

  4. WGAN (Wasserstein GAN)

  5. WGAN-GP (Wasserstein GAN with Gradient Penalty)

  6. LSGAN (Least Squares GAN)

  7. EBGAN (Energy-Based GAN)

  8. CycleGAN

  9. StarGAN

  10. Progressive GAN

  11. BigGAN

  12. StyleGAN

  13. StyleGAN2

  14. StyleGAN3

  15. GauGAN

  16. PIX2PIX (Conditional GAN for Image-to-Image Translation)

Autoencoders and Variants:

  1. Denoising Autoencoder

  2. Contractive Autoencoder

  3. Sparse Autoencoder

  4. Stacked Autoencoder

  5. Convolutional Autoencoder

  6. Variational Autoencoders (VAEs)

  7. Adversarial Autoencoder (AAE)

  8. Wasserstein Autoencoder (WAE)

  9. Beta-VAE

  10. InfoVAE

  11. Ladder Network

  12. DAE (Denoising Autoencoder)

  13. CAE (Contractive Autoencoder)

  14. SAE (Sparse Autoencoder)

  15. VQ-VAE (Vector Quantized VAE)

  16. CVAE (Conditional VAE)

  17. VAE-GAN (Combining VAE and GAN)

Normalizing Flows:

  1. Real NVP (Real Non-Volume Preserving)

  2. Glow (Generative Flow with Invertible 1x1 Convolutions)

  3. FFJORD (Free-Form Jacobian Adaption in Real-Time)

  4. MAF (Masked Autoregressive Flow)

  5. IAF (Inverse Autoregressive Flow)

  6. Neural Spline Flows

Other Generative Models:

  1. Adversarial Variational Bayes (AVB)

  2. Adversarially Learned Inference (ALI)

  3. BetaGAN

  4. BiGAN (Bidirectional GAN)

  5. Boundary Equilibrium GAN (BEGAN)

  6. Context Encoders

  7. Energy-Based GAN (EBGAN)

  8. Generative Moment Matching Networks (GMMN)

  9. Generative Query Network (GQN)

  10. GLO (Generative Latent Optimization)

  11. LatentGAN

  12. Neural Processes

  13. Neuromorphic Generative Models

  14. Noise-Contrastive Estimation (NCE)

  15. Recurrent Temporal GAN (RT-GAN)

  16. Sobolev GAN

  17. Variational Information Maximizing Exploration (VIME)

Ensemble Learning:


Bagging Algorithms:

  1. Bagging (Bootstrap Aggregating)

  2. Random Forest

  3. Extra Trees Classifier/Regressor

  4. Random Subspace Method

Boosting Algorithms:

  1. AdaBoost (Adaptive Boosting)

  2. Gradient Boosting (e.g., XGBoost, LightGBM, CatBoost)

  3. LogitBoost

  4. LPBoost (Linear Programming Boosting)

  5. BrownBoost

  6. TotalBoost

  7. MadaBoost (Multi-class AdaBoost)

  8. BrownBoost

  9. RUSBoost (Random Undersampling Boosting)

  10. GBM (Gradient Boosting Machine)

  11. DART (Dropouts meet Multiple Additive Regression Trees)

  12. LogitBoost

  13. BrownBoost

Stacking and Blending:

  1. Stacking (Meta-Ensembling)

  2. Blending

  3. Super Learner

  4. Weighted Averaging

Other Ensemble Techniques:

  1. Bag of Little Bootstraps (BOLB)

  2. Bootstrapped Ensembles

  3. Bayesian Model Averaging

  4. Bayesian Model Combination

  5. Rotation Forest

  6. Ensemble of Classifiers (ECOC)

  7. Heterogeneous Ensembles

  8. Dynamic Classifier Selection

  9. Ensemble Selection

  10. Cluster Ensembles

  11. Feature-based Ensemble Methods

  12. Rank Ensembling

  13. Majority Voting

  14. Simultaneous Boosting and Model Selection

Ensemble Approaches in Deep Learning:

  1. Snapshot Ensembles

  2. Stochastic Weight Averaging (SWA)

  3. Adversarial Training Ensembles

  4. Bag of Tricks for Training Neural Networks


Anomaly Detection:


Statistical Methods:

  1. Z-Score

  2. Modified Z-Score

  3. Mahalanobis Distance

  4. Dixon's Q Test

  5. Grubbs' Test

  6. Hampel Identifier

  7. Tukey's Test

  8. Interquartile Range (IQR)

  9. Box-Cox Transformation

  10. Exponential Smoothing

Density-Based Methods:

  1. Isolation Forest

  2. Local Outlier Factor (LOF)

  3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

  4. HBOS (Histogram-Based Outlier Score)

  5. ABOD (Angle-Based Outlier Detection)

  6. COF (Connectivity-Based Outlier Factor)

  7. CBLOF (Clustering-Based Local Outlier Factor)

  8. LOCI (LOF-based Outlier Detection)

  9. LoOP (Local Outlier Probabilities)

Distance-Based Methods:

  1. k-Nearest Neighbors (k-NN)

  2. k-Means Clustering

  3. Distance-Based Outlier Detection (DOD)

  4. Angle-Based Outlier Detection (ABOD)

Model-Based Methods:

  1. Gaussian Mixture Models (GMM)

  2. One-Class SVM (Support Vector Machine)

  3. Autoencoders for Anomaly Detection

  4. Isolation Support Vector Machines (iSVM)

  5. Markov Chain Models

  6. Hidden Markov Models (HMM)

  7. Generative Adversarial Networks (GANs) for Anomaly Detection

  8. Variational Autoencoders (VAEs) for Anomaly Detection

  9. Long Short-Term Memory (LSTM) for Anomaly Detection

Ensemble Methods:

  1. Isolation Forest Ensembles

  2. LOF Ensembles

  3. Autoencoder Ensembles

  4. Bagging-Based Anomaly Detection

Meta-Learning Approaches:

  1. Meta-Anomaly Detection

  2. Learning to Detect Anomalies

  3. Transfer Learning for Anomaly Detection

Time Series Anomaly Detection:

  1. Seasonal Hybrid ESD (S-H-ESD)

  2. Twitter's AnomalyDetection R Package

  3. Prophet

  4. ARIMA (AutoRegressive Integrated Moving Average) with Anomalies

Deep Learning-Based Approaches:

  1. Convolutional Autoencoders for Image Anomaly Detection

  2. LSTM Autoencoders for Sequence Anomaly Detection

  3. GANs for Image and Data Anomaly Detection


Neural Network Architectures:


Feedforward Neural Networks (FNN):

  1. Single-Layer Perceptron

  2. Multi-Layer Perceptron (MLP)

  3. Deep Feedforward Networks

  4. Cascade-Correlation Neural Network

  5. Radial Basis Function Networks (RBFN)

  6. Extreme Learning Machines (ELM)

  7. Functional Link Neural Network (FLNN)

  8. Probabilistic Neural Network (PNN)

  9. Generalized Regression Neural Network (GRNN)

  10. Hierarchical Temporal Memory (HTM)

Convolutional Neural Networks (CNNs):

  1. LeNet-5

  2. AlexNet

  3. VGG (Visual Geometry Group)

  4. GoogLeNet (Inception)

  5. ResNet (Residual Networks)

  6. DenseNet

  7. MobileNet

  8. EfficientNet

  9. Xception

  10. SqueezeNet

  11. Inception-ResNet

  12. ShuffleNet

  13. NASNet

  14. SENet (Squeeze-and-Excitation Networks)

  15. MnasNet

  16. ResNeXt

  17. HRNet (High-Resolution Networks)

  18. GhostNet

  19. EfficientDet (Efficient Object Detection)

  20. RegNet (Regularized Networks)

Recurrent Neural Networks (RNNs):

  1. Vanilla RNN

  2. LSTM (Long Short-Term Memory)

  3. GRU (Gated Recurrent Unit)

  4. Bi-directional RNNs

  5. Attention Mechanisms (e.g., Transformer)

  6. U-Net (Used for Segmentation)

  7. WaveNet (Used for Text-to-Speech)

  8. Neural Turing Machine

  9. Differentiable Neural Computer (DNC)

  10. Dynamic Time Warping Networks

Sequence-to-Sequence Models:

  1. Seq2Seq (Sequence-to-Sequence)

  2. Encoder-Decoder Architectures

  3. Attention Mechanisms (e.g., Transformer)

  4. Pointer Networks

  5. Transformer (e.g., BERT, GPT)

  6. T5 (Text-to-Text Transfer Transformer)

  7. XLNet

  8. RoBERTa

  9. ELECTRA

  10. GPT-3

Generative Models:

  1. Generative Adversarial Networks (GANs)

  2. Variational Autoencoders (VAEs)

  3. Wasserstein GAN (WGAN)

  4. Conditional GAN (cGAN)

  5. CycleGAN

  6. Progressive Growing of GANs (PGGAN)

  7. StyleGAN

  8. StyleGAN2

  9. StyleGAN3

  10. BigGAN

  11. VQ-VAE (Vector Quantized VAE)

  12. GPT-2 (OpenAI's Generative Pre-trained Transformer 2)

  13. GPT-3.5

  14. GPT-4

Siamese Networks:

  1. Siamese Neural Networks for Similarity Learning

  2. Triplet Networks

Neural Architecture Search (NAS):

  1. Evolutionary Algorithms for Neural Architecture Search

  2. Reinforcement Learning-based NAS

  3. Gradient-Based NAS

  4. DARTS (Differentiable Architecture Search)

  5. ENAS (Efficient Neural Architecture Search)

Graph Neural Networks (GNNs):

  1. Graph Convolutional Networks (GCNs)

  2. GraphSAGE (Graph Sample and Aggregation)

  3. GAT (Graph Attention Networks)

  4. Graph Isomorphism Networks (GIN)

  5. ChebNet (Chebyshev Networks)

  6. GraphSIF (Graph Structural Isomorphism Fingerprinting)

  7. Diffusion Convolutional Neural Networks (DCNN)

  8. GraphSAINT (Graph Sample and Aggregated Importance Sampling)

  9. Gated Graph Neural Networks (GGNN)

  10. Graph Neural Ordinary Differential Equations (Graph Neural ODE)

  11. Heterogeneous Graph Neural Networks

Temporal Networks:

  1. Temporal Convolutional Networks (TCNs)

  2. Time Series Prediction Models using LSTM/GRU

  3. ST-ResNet (Spatiotemporal Residual Networks)

  4. STRNN (Spatiotemporal Recurrent Neural Network)

Hybrid Architectures:

  1. Autoencoders with Convolutional or Recurrent Layers

  2. Attention Mechanisms in Various Architectures

  3. Capsule Networks in Combination with CNNs




Comments


bottom of page